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Shearing of loose granular materials: A statistical mesoscopic model
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A two-dimensional lattice model for the formation and evolution of shear bands in granular media is
proposed. Each lattice site is assigned a random variable which reflects the local density. At every time step, the
strain is localized along a single shear band which is a spanning path on the lattice chosen through an
extremum condition. The dynamics consists of randomly changing the ‘‘density’’ of the sites only along the
shear band, and then repeating the procedure of locating the extremal path and changing it. Starting from an
initially uncorrelated density field, it is found that this dynamics leads to a slow compaction along with a
nontrivial patterning of the system, with high-density regions forming which shelter long-lived low-density
valleys. Further, as a result of these large density fluctuations, the shear band, which was initially equally likely
to be found anywhere on the lattice, gets progressively trapped for longer and longer periods of time. This state
is, however, metastable, and the system continues to evolve slowly in a manner reminiscent of glassy dynam-
ics. Several quantities have been studied numerically which support this picture and elucidate the unusual
system-size effects involved.
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I. INTRODUCTION

Modeling the rheology of granular media using co
tinuum solid mechanics has reached a high degree of sop
tication in terms of constitutive equations@1#. Whatever the
complexity of load paths being studied, an accurate acco
of the experimental stress-strain relationship can now
achieved provided enough parameters or internal varia
are included in the constitutive laws. However, such
proaches are descriptive and leave unanswered ques
pertaining to the scale of grain sizes.

In parallel to such phenomenological descriptive theor
a lot of effort has been spent in recent years in develop
powerful computer models able to simulate granular syste
at the individual grain level. Molecular dynamics approach
@2#, or other techniques such as ‘‘contact dynamics’’@3,4#,
now offer the possibility of dealing with several thousa
particles, and provide extremely realistic pictures of the
tailed micromechanics.

Such numerical techniques can be used to accurately
vestigate displacement fields, resolved both spatially
temporally @5#. The latter reveal an intriguing feature
namely, that even in the most simple tests, such as a sim
steady shear imposed over large strains, the local displ
ment appears very unsteady, with short quiescent per
where the displacement field is spatially smooth, separa
by sudden changes where the configuration of grains rea
a local instability and undergoes a rapid reorganizat
through significant displacements at the grain level. T
temporal variability manifests itself in giant stress fluctu
tions observed experimentally when particles and walls

*Present address: Santa Fe Institute, 1399 Hyde Park Road,
Fe, NM 87501.
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stiff, and when the high-frequency part of the stress signa
not filtered out@6#. Numerical simulations indicate@7# that
instantaneous strain fields consist essentially of locali
strains occurring along one or a few shear bands. Howe
as the strain increases~over the moderate range accessible
the simulation!, there seems to be little or no correlatio
between successive shear bands, so that the time avera
the displacement field erases these discontinuities and
duces smooth strain fields.

Such fluctuations are obviously ignored in continuu
modeling. And indeed it may appear that the identification
these instabilities is relevant only for discussing fine deta
of microscopic and transient features. However, their r
evance can be judged only at a mesoscopic level of mo
ing, since the microscopic numerical techniques are far fr
being able to reach the relevant time scales. In fact, in
following we will argue that these instabilities may have
significant impact, both on large scale heterogeneities of
medium itself, and on the systematic slow time evolution
the macroscopic friction angle. A short account of some
our results has appeared in a previous publication@8#.

The paper is organized as follows. In Sec. II, we rec
some features observed experimentally or numerically
we consider essential, and, in Sec. III, we progressively
troduce the rules of a model whose aim is to describe so
statistical aspects of shearing of loose granular media o
large strains. In Sec. IV, we present in detail the differe
quantities studied numerically for this model. We conclude
Sec. V with a summary of our results and a discussion
possible experimental checks.

II. THE SHEAR PROCESS IN LOOSE GRANULAR
MATERIAL

We will address here the question of the behavior
granular media subjected to a simple shear for large stra
nta
©2003 The American Physical Society03-1
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TÖRÖK, et al. PHYSICAL REVIEW E 67, 021303 ~2003!
We restrict ourself to the simplest granular medium one m
consider, namely, rigid~undeformable! grains with Coulomb
friction. This refers experimentally to dry sand subjected t
low confining pressure. We are concerned here with la
strains, and thus in order to avoid the problem of bound
conditions, which would limit the maximum strain, we co
sider an annular shear cell. To simplify the problem furth
we consider only the case where the problem is invar
along the shear direction. As shown in Fig. 1, the displa
ment is a single function of the coordinate of a radial cro
section (x,y), and constant along the orthoradial directionz
~traditionally this situation is termed ‘‘antiplane’’!. More-
over, we are interested only in the quasistatic regime,
time as such is irrelevant, and only the total strain matte

One of the important observations of soil mechanics c
cerning such media is the concept of a critical state@9,10#.
Depending on the preparation of the sample, the beha
under shear may differ considerably. For loose sand~low
density!, the deviatoric stress to be applied increases with
total shear strain and, simultaneously, a densification is
served@11,12#. However, as the shear strain increases,
density and shear stress seem to reach a plateau indepe
of the initial density. This state is called the ‘‘critical state
On the contrary, if the initial density is large, a single she
band forms, while the rest of the medium remains froz
@13#. The formation of the shear band is preceded by a v
ume expansion of the medium@14#, but after the band is
formed all further properties remain quasiconstant. A
tailed experimental investigation has revealed@15# that in-
side the shear band the density tends to approach the cr
state density. This concept of the critical state has rece
considerable experimental evidence over the years, an
implemented in a number of continuum constitutive law
Experiments, however, mostly deal with a rather moder
total strain well below unity.

A simple picture which is consistent with the critical sta
concept is that both the friction and the dilation angle
crease with the density, and that the critical state is the d
sity for which the dilation angle is zero~no change in volume
under shear!. Retaining the density as the only internal va
able is an approximation. Other characteristics of the tex
of the medium, such as the fabric tensor~which has informa-
tion about the orientation of contact normals!, certainly play
a significant role. For the purpose of simplicity, we will
the following only retain one single scalar internal variab

FIG. 1. Schematic picture of the shear process. The shear
is parallel to the shear directionz due to the periodic boundar
conditions in this direction. We sum up along this direction to ge
two-dimensional sample in thexy plane.
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governing the friction angle. It could be either simply th
density or a combination of density and texture. Nevert
less, in all cases we will refer to this internal variable
‘‘density,’’ irrespective of its precise meaning.

As mentioned above, numerical simulations seem to
veal @7# evidence for the existence of instantaneous sh
bands even in loose granular media. On the other hand
experiments the strain appears to be homogeneous and
localized. The resolution of this apparent paradox is that
shear bands change rapidly, and may visit the entire med
in the process. Thus, during an increment of shear that ca
observed experimentally, only a time average over ma
such shear bands is seen. In our modeling, we introduc
basic time scale for each elementary procedure. This t
step is then clearly much shorter than most experiment
accessible time scales. However, our model attempts
achieve a qualitative rather than a precise quantitative m
ping. One of the main features of the model is to show t
these two apparently unrelated facts—the existence of
stantaneous shear bands at early times and its localizatio
late times—are actually related, with a slow transition b
tween these two limiting cases. This slow dynamics is re
niscent of slow aging properties encountered in glassy s
tems, and indeed we will see that a breakdown of ergodi
does appear in this model.

III. THE MODEL

A. Motivation and definition

At every instant the two-dimensional medium is chara
terized by a single, scalar internal variable, the dens
%(x,y). This represents an average of the density along
orthoradial directionz. From this density, we deduce a co
responding local friction coefficientm(x,y). The latter is
assumed to be a single monotonically increasing function
the density@16#. For simplicity, we may assume a linea
relationship in the following although this is inessential.

The strain is imposed on the shear cell through prescri
displacements of the bottom and top planes. As particles
considered rigid~no elastic deformation!, the shear cell can
move only if the shear force exceeds a threshold value p
portional to the normal pressure. This limit stress is given
the ‘‘weakest internal surface.’’ Indeed, in our antiplane g
ometry, the shear strain will localize on the surface@i.e., path
in the (x,y) plane# that fails first. The latter is assumed to b
given by the following algorithm. For each directed pathP
spanning the entire cross section along thex axis, we com-
pute the maximum shear force it can support according to
local density. Assuming that the local slope of the path
always small, this maximum forceF(P) is simply propor-
tional to the sum of local friction coefficients, and thus, ma
ing use of the assumed linear variation of the friction co
ficient with the density,F(P) is proportional to the sum o
local densities,

S~P!5 (
(x,y)PP

%~x,y!, ~1!

where the sum runs over the sites along the path. Among
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a
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SHEARING OF LOOSE GRANULAR MATERIALS: A . . . PHYSICAL REVIEW E67, 021303 ~2003!
the possible paths, the weakestP* @for which S(P* )
5min] will fail first, and this fixes the value of the shea
force F5F(P* ). In agreement with the previously men
tioned observation, at every basic time step the shear stra
realized along a single shear band. Away from this sh
band, the strain rate is zero, and thus the density is k
constant in time. However, inside the shear band, there
relative motion of grains, and thus the density is suscept
to change.

The next step is now to determine how the density ins
the shear band evolves with time. Even though it is obser
that large strains are necessary in order for a system to r
its critical state, we argue that at the microscopic level
evolution of the mediumcannotdepend on the total impose
strain. Thus the evolution rules for the density within t
shear band should be designed in such a way that they do
depend on the past history, but only on the present s
~density field!. As the density ought to contain the basic i
formation of the local characteristics, we propose that wit
the shear band the local density%(x,y) is randomly modi-
fied. More precisely, in one elementary time step, cor
sponding to the ‘‘lifetime’’ of the shear band in a very loo
granular sample, we assume that the density along the s
band acquires random uncorrelated values picked from a
tistical distributionp(%). The uncorrelated character of th
distribution is, however, justified only on a mesoscopic sca

After the elementary strain event, we have a new den
map%(x,y). We now simply reiterate this procedure as lo
as desired; namely we identify the new path that minimi
S(P) ~there is a linear algorithm for finding the gobal min
mum!, and update the value of the densities along this p
randomly. As the purpose of the present article is to illustr
some statistical aspects of this dynamics, we do not try
mimic any specific granular system by imposing a realis
density distribution or initial correlations in%. We will
choose here a simple uniform distribution between 0 an
for p(%). The mean value and variance of the distributionp
can be chosen arbitrarily, since a translation and rescalin
% do not affect the result.

A key assumption of our model which may appear
precluding the occurrence of a slow evolution toward a cr
cal state is the selection of the density values within a sh
band from uncorrelated, smooth distributions. In fact,
will show below that, on the contrary, a collective and pure
statistical effect produces a slow increase of the mean d
sity over large strains.

Our model is furthermore discretized on a regular squ
lattice. We have looked at two different kinds of square l
tice to check the robustness of our results. In the first one
value of the density% is carried by the bonds. The orienta
tion of the lattice is chosen so that the principal directio
lies at p/4 with respect to the (x,y) axis as shown in Fig.
2~a!. In the other version, density values are assigned to
sites of a square lattice. In this case the minimal path can
connected through the next nearest neighbors too, as sh
on Fig. 2~b!. Both square lattices give exactly the same
sults so in the following we just refer to them as squa
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lattice realizations. We note here that Figs. 4–6, 13, and
below are obtained for the tilted and the others for the n
mal square lattice.

We mention here that a third type of lattice, the hierarc
cal diamond lattice@17#, was also studied. The numerica
results are, surprisingly, essentially unchanged by the
usual topology of this recursively constructed lattice. T
hierarchical construction of this lattice, however, allows us
solve the model analytically, thus giving us a quantitati
picture of the behavior of the system. These results are
sented in@18# where the intimate relationship of our mode
to other models of statistical physics is also discussed.

The rule of our model, finding the extremal directed spa
ning path at every instant, is similar to finding the groun
state of a directed polymer in a random potential@19#. How-
ever, in our case this potential is uncorrelated only at
beginning; it changes in time through the process descri
above of ascribing new densities to all sites along the m
mal path. It is clear from this relationship between the mo
els that the shear band is self-affine with a Hurst expon
z52/3 at the beginning, i.e., the transverse fluctuations
the band grow with the size (Lx) of the sample width asLx

z .
We will discuss the time evolution of the roughness later
this paper.

IV. NUMERICAL RESULTS

We first show the density map, Fig. 3, of the system
different timest/L ranging from 4 to 4000. The gray scal
chosen focuses on the vicinity of 1 so as to highlight t
progressive densification. It may appear counterintuitive
first that the rest of the medium shows a densification at
when the only dynamics consists of finding a minimal pa
and updating sites along it randomly. However, the reaso
simply that this update systematically hunts out the sites w
the lowest density values and replaces them.

At early times, we observe an apparently uncorrela
field. However, as time proceeds, it is possible to distingu
preferential channels of high density aligned along the dir
tion (x axis! of the minimal paths. These channels, howev
have a significant width, which shows that though the mi
mal path has been confined to this zone it has enough f
dom to explore different neighboring configurations a

FIG. 2. ~a! Visualization of the tilted lattice. The shear band
marked with a thick line.~b! A sample configuration of the minima
path on the normal square lattice with densities assigned to site
3-3
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TÖRÖK, et al. PHYSICAL REVIEW E 67, 021303 ~2003!
achieve a significant local densification. We also see wit
these wide and dense channels a single path with a lo
density. This was the last active minimal path in the chan
As time passes, the number of channels increases, an
does their width. They get partly interconnected, leaving
ways the same scars of low-density paths. Finally, at
latest time shown on the figure, the average density is q
high, and traces of ancient minimal paths are still visib
Nevertheless, what is striking is the occurrence of isla
entrapped by these high-density channels, where the de
map looks as it did at the very early stage of the time e
lution. This signals that these regions have basically not b
visited by the minimal path during the entire history of t
system. These features are quite generic, and they revea
the spatial ~and temporal! organization of the activity is
rather complex. The rest of the study is devoted to a m
quantitative account of this activity, of the resulting kineti
of compaction, and of the unexpected finite-size effe
which appear in this problem.

In the following subsection, we will introduce the ma
measurements performed numerically on the model.

A. Definitions of numerically measured quantities

1. Average density

The most important quantity is theaverage densityof the
sample, which we define as the mean of the density of
inactive sites, i.e., the sitesnot belongingto the shear band
We denote this bŷ%&. This definition is convenient becaus
^%& increases monotonically by the rules of our model.
experiments one of the most frequently measured quant

FIG. 3. Snapshots of densities of a square lattice of size
3256 at time~a! 100054L, ~b! 104540L, ~c! 1055400L, and~d!
10654000L. The gray scale is presented at the bottom. The ac
shear band is drawn in black.
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is the volumetric strain, which is just the change in the
verse of the average density. In our model, whenp(%) is
chosen to be the uniform distribution in the interval@0,1#,
the average density is bounded by^%&<1. It is easy to see
that in finite systems the steady state~the asymptotics! can-
not be other than a system with maximal densities eve
where except for a path which will always be chosen as
minimal path. This state is equivalent to^%&51.

We are interested in the approach to this asymptotics
we plot the quantity 12^%& as a function of time. Within the
granular medium context, this means that we mainly stud
loose initial state and its convergence to the critical st
@9,10#. However, we will also present results obtained wh
one starts from a high initial density later~Sec. IV G!.

Figure 4 shows that the difference of the average den
from its asymptotic value remains almost constant durin
first staget/L!1, and then decreases steadily. This first
crease of̂ %& is well captured by a reduced time equal
t/L. However, as time progresses, the average density
creases more and more slowly. Quite strikingly, the larger
system size, the slower the increase in density. Further
this will be interpreted as a breakdown of ergodicity.

2. Shear band density

It is also natural to define thedensity of the shear band,
which we denote by%SB. This is just the average density o
the sites along the minimal path~before updating them!. As
already mentioned in the Introduction, we assume that
maximal static shear force is a single function of the dens
Thus the density of the shear band can be related to the s
stress in experiments.

Figure 5 shows the evolution in time of the differen
0.52%SB. As expected, as time proceeds, the density alo
the shear band will tend toward the average of the rand
densities that are used to refresh the sites or bonds along
shear band. Using a uniform distribution of densities b
tween 0 and 1 implies that this average is 0.5. Note that

6

al

FIG. 4. The difference of the average density from
asymptotic value 1 is plotted as a function of time. The system s
are L532, 64, 128, 256, 512. The average was done over
inactive sites on the lattice and for an ensemble of 20–1
samples.
3-4
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contrast to the previous case, the reduced timet/L accounts
nicely for the time evolution of this quantity for all syste
sizes for t/L<104. This is a second puzzle we will try to
address further in the following sections as well as in@18#.

3. Mean Hamming distance

We also calculate theHamming distanceof two succes-
sive shear bands, which is defined as the number of site~or
bonds! by which two consecutive shear bands differ. We d
note this distance byd. The natural normalization is to divid
this distance by the total length of the pathLx . As we will
see this quantity is very useful in characterizing the ti
evolution of the localization process.

Figure 6 shows that the mean Hamming distance is c
to unity ~i.e., two consecutive paths do not overlap at all! at
early times, and decreases toward 0 fort/L@1. We recall
that when the distance is equal to 0 the two consecu
conformations of the shear band are identical, in spite of
total renewal of random densities along them. This indica

FIG. 5. The difference of the mean density of the shear b
from its asymptotic value 0.5 vs time. Notation and system sizes
the same as in Fig. 4.

FIG. 6. The average Hamming distance vs time. The same
tem sizes were scaled together as on Fig. 4. The analytical pre
tion @18# 1/(t11) is plotted over the data. Note that scaling wi
system size displays systematic corrections for larger systems.
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more persistent as the system ‘‘ages.’’ We will analyze f
ther the complete statistical distribution of the Hamming d
tance later in this paper.

4. Cumulative shear

An experimentally relevant quantity is thecumulative
shearingdenoted byscum. The numerical procedure we fol
low to obtain this quantity in our model is the following~see
Fig. 7!. We mark a line in they direction ~see Fig. 2!. We
measure the total activityna(y) along the line, i.e., the num
ber of instances when the shear band went through a poy
on the line. From this, we define

scum~y!5(
j 50

y

na~ j !. ~2!

By definition scum(Ly)5t, since at every instant the she
band has necessarily to pass through one or the other sit
a cut along they axis. The fluctuations ofscum(y) about its

d
re

s-
ic-

FIG. 7. Numerical estimation of the cumulative shearingscum.
~a! represents the number of times (na) a sitey was active up to
time t51000 in a cross section of a 1283128 sample.~b! is the
cumulative representation of~a!: ( j 50

y na( j ). The dashed line indi-
cates the homogeneous case.
3-5
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mean value (t/Ly)y then reflect the inhomogeneity of th
shear process within the sample. In Fig. 8, we track the t
evolution ofscum(y), after subtracting out the mean valu
As indicated, a snapshot of this quantity encodes the his
of the process of shearing in this system.

B. Early time regime

It is apparent from Figs. 4, 5, and 6 that the initial beha
ior of the model is very different from the late stages. In t
former regime, the average distanced ~Fig. 6! is equal to the
system size, indicating that successive shear bands do
overlap at all. In other words there is an effective stro
repulsive interaction between them.

The density of the shear band~Fig. 5! provides an expla-
nation for this behavior. From the directed polymer@19# pic-
ture it is known that the first shear band has a mean den
of %SB(t50)5e* '0.22 on the tilted square lattice. Th

FIG. 8. The cumulative shear corrected by the average displ
ment for a system of size 1283128. As one can observe, this qua
tity encodes the history of the process; a dip in the profile indica
the presence of the shear band and the depth of the dip is indic
of the amount of time it has spent in that location. For example
the beginning when successive shear bands are distinct, every s
visited approximately equally and the profile has no deep peak
valleys. After this, att55000, the first shear band gets localized
aroundx5100. This lasts until aboutt520 000, and then it jumps
to x540. After spending some time here it jumps back, close to
previous position (23104,t,53104).
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state of the shear band after the densities of the sites alo
have been changed is independent of its previous state
the mean density is now 0.5~since it is just an average ofLx

independent random numbers taken from the uniform dis
bution @0,1#!. This implies that at the next instant the chos
shear band will have a very low probability of sharing bon
or sites with the previous one, since there will still be ma
spanning paths with density smaller than 0.5. Thus, until
the sites are visited at least once, successive shear b
have few sites or bonds in common (d5Lx in Fig. 6!. Also,
in this regime, since the path sweeps all sites, the cumula
shearing appears to be homogeneous~Fig. 8, first plot!. As
mentioned in the Introduction, this uniform shear strain
consistent with the experimental observations that no w
defined shear bands persist over observable time scale
loose samples.

The characteristic time to build up correlations is set
the sweeping through the sample, i.e., it is given byLy . This
is the reason why in the early time regime the plots in Fi
4–6 can be scaled together withLy .

C. Localization

The above described behavior is drastically changed
time goes on and the shear band gets localized for very l
times at the same location.

As the average density increases, the probability of cho
ing a minimal path with density less than 0.5 starts decre
ing, and thus for the new path it becomes more favorable
overlap to a greater and greater extent with the previous o
As a result, the activity is restricted to a small region an
with the localization of the activity, the density of this regio
increases. Strikingly, the path does not easily move to o
regions with lower average density because it would nee
big jump~such that consecutive paths do not overlap!. As the
average density along all possible paths in the system~except
for the latest! is larger than 0.5, such a jump is extreme
improbable especially in large systems. Thus only sm
jumps occur in the path conformation. As the density in t
vicinity of the path increases this motion soon gets extrem
slow, and finally the path gets trapped in canyonlike str
tures surrounded by extremely high-density regions@see
Figs. 3~b!–3~d!#. This lasts until a rare big jump is per
formed.

The early repulsive interaction is thus now inverted to
attractive one as is shown by the rapid 1/t-like decrease of
the Hamming distance~Fig. 6!, as well as the decrease o
0.52%SB and of^%& from their initial values~Figs. 5 and 4,
respectively! in this regime.

There are a number of consequences of the localizat
First, as time goes on, the shear band, which was not vis
at all in the density map of the system@see Fig. 3~a!#, be-
comes more and more apparent until finally it becomes
calized at a given position for macroscopic times. This is
accordance with experiments and with the critical state c
cept@9,10#. Secondly, since the same path for the shear b
is chosen most of the time, its density saturates to
asymptotic value 0.5~Fig. 5!. Again this is consistent with
the experimental observation that the density within
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shear band tends to achieve a well-defined value some
smaller than in the rest of the medium for dense granu
media. Simultaneously, the shear stress saturates to a
stant value since this is imposed by the shear band itself@1#.
However, we note that in our model the global density of
system continues to increase in time, albeit very slowly. T
extremely slow trend may well be out of reach experime
tally. However, it is known@1# that the shear stress saturat
much faster than the volumetric strain~the average density in
our case! which is clearly justified by the numerical result

On the cumulative shear, which is a straight line w
small statistical fluctuations in the early time regime, the
appear steplike structures, indicators of progressively m
persistent localization~Fig. 8!. However, this localization is
not everlasting since the shear band may perform big jum
to other local minima. This can be seen on the series
cumulative shear curves in the form of certain steps dis
pearing and others becoming more prominent. This pre
tion could easily be tested experimentally.

D. Systems with different aspect ratios

All changes take place along the shear band, which
aligned along thex direction, and thus we may anticipate th
the x andy directions will play different roles. Therefore i
this section we study the influence of the width and length
the system. In what follows, we use the termslong for
samples withLy,Lx and wide in the opposite case (Ly
.Lx).

With very long and wide systems we are able to sepa
the two kinds of dynamics described in Sec. IV C. If o
considers a long sample (Ly /Lx is small!, we expect the time
evolution to be independent ofLx for all quantities of interest
since the lattice can be split into subparts placed in ser
Thus one may expect the large jumps to disappear and
average density to scale solely withLy ~Fig. 9!. A wide sys-
tem, on the other hand, might be expecteda priori to behave
like a number of competing subsystems.

1. Long systems

On Fig. 9 we plotted the time dependence of the den
in long samples withLy54 ~lower curves! andLy58 ~upper

FIG. 9. Long samples with widthLy54 ~lower curves! andLy

58 ~upper curves!. Three different lengths were used in both cas
Lx /Ly52.5, 5, and 10.
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curves!. The t/Ly scaling is excellent in both cases. How
ever, the densification obeys a different time evolution
different Ly . The rate at which the density increases
slower as the width increases.

2. Wide systems: Breakdown of ergodicity

Wide samples can be considered as subsystems pl
next to each other and coupled in parallel. In contrast w
the previous case, we will see that the evolution of the d
ferent subsystems cannot be accounted for by a simple a
age.

In the case of wide systems the same plot as before~Fig.
10! shows not/Ly scaling for small system sizes.

We could imagine the following construction. Suppose
split a given wide system into two subsystems of sizeLx
3(Ly/2). ProvidedLy is large enough, we can ignore th
interaction between the two subsystems, and thus we
study independently the time evolution of both subsyste
Now, if we merge them again, we realize that the only rea
why the resulting densification could differ from the me
surement on separate subsystems is that the timet1 that the
shear band has stayed in subpart 1 is far from being equ
t/2. In other words, the breakdown of the data collapse
12^%& vs. t/Ly is a breakdown of ergodicity. This is natu-
rally associated with what we termed ‘‘localization’’ earlie

In order to make this concept more explicit, let us co
sider an extreme version of such a breakdown of ergodic
During a first stage, up tot/Ly of order 1, the activity is
evenly spread over the system. Then we assume that
such a time the activity remains confined in a subsystem
sizeLx3,. All other subsystems are assumed not to be v
ited by the shear band, and thus their density is quenche
the value reached at the onset of localization,%0, at time
t05uLy . The global density will thus obey

12^%&~ t !5
~12%0!~Ly2, !1 f ,„t2u~Ly2, !…,

Ly
, ~3!

,
FIG. 10. Time dependence of the density difference from

asymptotic value for wide samples. The length of the system al
the shear band isLx55; the widths areLy55, 10, 20, 40, 80, and
160 from bottom to top, respectively.
3-7
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where f ,(t)512^%&(t) describes the densification of th
representative cell of sizeLx3, where the activity is con-
fined, and thus 12%05 f ,(u,).

In this crude scenario, we note that the global dens
does not converge to 1 as time goes to infinity, but rat
remains stuck at a value such that@12^%&(t)#→ f ,(u,)(1
2,/Ly). In more quantitative terms, we tried to carry o
such a procedure, and indeed for a fixedLx it is possible to
account for the time evolution of systems of different widt
using%0 as a free parameter and calculating, from theLy
dependence. It turns out that, changes for small values o
Lx but becomes constant (,.30) above the system size o
Lx.30. The test of this analysis can be seen in Fig.
However, the asymptotic density turns out to depend onLx .

The conclusion is that, although such an extreme mo
ing of the localization is able to capture some of the stro
size effects observed numerically, it is too crude to provid
quantitative account of the densification. The hierarchical
tice provides us with a convenient case where an analy
investigation of this breakdown of ergodicity can be made
is shown in Ref.@18#, that the local ‘‘age’’ distribution as-
sumes a multifractal distribution whose spectrum can
computed exactly. This property can then be used to prov
an expression for the density evolution in time.

E. Time evolution of the Hamming distance distribution

We study here the distribution of Hamming distances a
function of time,P(d,t). This quantity is the analog of a
‘‘avalanche distribution,’’ such as is usually studied in se
organized critical~SOC! systems. As we will see below, thi
quantity does indeed decay as a power-law, as in SOC
tems. However, since a steady state is never reached
power-law decay is multiplied by a time-dependent prefac

The distribution P(d,t) is shown in Fig. 12. At early
times, this quantity is peaked around the maximum va
(d5Lx) while in the localized regime it becomes peaked
the minimum value (d50). This corresponds to the trans

FIG. 11. The same data as in Fig. 10 with a different effect
density%* 5%0(Ly2,). Note that the plot displays nice scaling a
well as a clean power law decay over at least three decades. H
ever, if the simulation is continued further the average density
creases over%* .
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tion from repulsive to attractive effective interaction betwe
consecutive path conformations. At fixed~large! times, the
distribution P(d,t) decays as a power law ofd, as can be
seen in Fig. 13. The measured exponent is

P~d,t !}d23, ~4!

in addition to which there exists a peak atd50, the ampli-
tude of which varies significantly with time. The decay

w-
-

FIG. 12. The distribution of the Hamming distance on a 64364
square system for different times. The dashed lines indicate

mean (d̄).

FIG. 13. Scaling plot for the distribution of the Hamming di
tanceP(d,t) vs d. The three curves are for three square system
sizes:L564 at t510 000,L5128 at t51000, andL5256 at t
5500. The straight line has slope23 indicating that the decay o
P(d,t) with d is a power law. Jumps of order of half the syste
size, however, seem to have an enhanced probability.
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averaged as 1/t ~see Fig. 6! found earlier implies that the
time dependence of thedÞ0 part isp(d,t)}1/(td3). Thus,
including the different scalings withLx and Ly , we obtain
finally the asymptotic form

P~d,t !}
LxLy

td3
. ~5!

Here again the hierarchical lattice allows us to compute
distribution analytically~for Lx5Ly), and we find that a
similar behavior is obtained@18#.

F. Roughness exponent of the shear band

From the directed polymer analogy we know that t
shape of the shear band is self-affine with an exponentz
52/3 for infinitely large systems. It is an interesting questi
whether this property of self-affinity is conserved in the tim
evolution of our system. We have investigated this ques
and have found self-affine scaling for albeit with a tim
dependent effective Hurst exponent~Fig. 14!. We have esti-
mated the value ofz by measuring the width of the shea
band,wL(t), for different system sizesL3L. The width is
defined as the standard deviation of they coordinate of the
active path. The latter is expected to scale aswL(t)}Lz for a
self-affine object. To estimatez, the roughness exponent, w
have computed the ratio of two such widths for lattice siz
differing by a factor of 2, and used the following estimate

z5
log10@w2L~ t !/wL~ t !#

log10~2!
, ~6!

wherewL(t) is the width of a shear band in aL3L lattice at
time t. The results obtained for the tilted square lattice can
seen on Fig. 14. It starts fromz(t50)52/3 as expected from
the directed polymer result and has an asymptotic value
z.0.8.

FIG. 14. Estimated self-affine exponent as a function of ti
obtained through Eq.~6! for system sizes varying fromL564 to
L5512.
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G. Systems with high initial densities;
relevance of initial conditions

We have so far studied the situation when a very loo
granular medium compactifies under shear, while simu
neously a shear band gets quasilocalized in the system.
also of interest to study samples with higher initial dens
where it is known experimentally that a shear band is loc
ized from the very beginning. In this section we study t
interesting crossover to that state from the previously
scribed dynamics.

We choose initial densities from the interval@% init :1#
with a uniform distribution and varying% init . In Fig. 15 the
time evolution of the difference of the average density fro
its asymptotic value is plotted using different initial cond
tions. Since all previous arguments hold we assume tha
finite systems the asymptotic value of the average densit
1, irrespective of the initial density.

The striking result of these simulations is that, if% init
,0.5, all curves coincide in the decreasing regime. Ho
ever, if % init.0.5 a different time evolution is observed fo
large times. Thus we can assume that in the early time
gime, when the shear band is swapping uncorrelatedly
visits all sites that have a value less than the expecta
value of the refreshing density distribution of 0.5. After th
first regime, as all small values are eliminated, the sys
effaces the initial condition almost entirely.

On the other hand, starting from initial conditions wi
% init.0.5 we largely eliminate the possibility of big jump
The shear band fluctuations are now very small, involv
changes in a very few sites, and hence the density chang
the sample is extremely slow.

H. Summary of the numerical results

We have seen that the system densifies with time so a
approach a unit density, i.e., the maximum available den
from the distribution used to refresh the sites. The kinetics
the densification is slow~slower than any power law!. More-
over, after a first transient where the reduced timet/L ac-
counts for theL dependence, the compaction process

e

FIG. 15. Time dependence of the difference of the average d
sity from its asymptotic value for starting densities with initial de
sity ranges @% init :1# from top to bottom, respectively:% init

50.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8. The system size is
3-9
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pends on the system size in a nontrivial way. The width
the system is the parameter that really controls this ano
lous behavior, signaling that the competition between pa
lel paths may somehow play a key role in this breakdown
system-size rescaling. This competition is a subtle one, h
ever, lying somewhere in between complete localization
the path~which, as we saw in Sec. IV B, is too crude
mirror the actual scenario! and complete delocalizatio
~which, as mentioned earlier, accounts only for the early ti
behavior!.

The density maps display an interesting organization
‘‘canyonlike’’ paths with density much lower than their im
mediate surroundings~where the density approaches 1 qu
uniformly!. Moreover, large regions are left quiescent, be
systematically avoided by the minimal paths. This contras
high and low activity within the same system is at the he
of the breakdown of ergodicity observed after an initial tra
sient. As remarked, however, the distribution of Hammi
distances between consecutive paths displays a some
simpler behavior where the role of the width and the len
of the system can be simply accounted for.

V. CONCLUSION AND DISCUSSION

Although very simply defined, our model seems to ca
ture some essential features of granular shear and provid
the same time several predictions. The model demonstr
the self-organized mechanism of the localization of the sh
band in loose granular materials. As the sample ages,
high fluctuations in density appear where we can obse
some kind of screening effect: the more resistant region
higher density protect the looser ones. This model also g
an insight into a dynamics that exhibits very nontriv
system-size effects.

Our stochastic model makes an attempt to describe
s
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large-strain behavior of sheared loose granular matter o
mesoscopic level. The rules of the model do not include a
dependence on the total amount of shear imposed on
medium; nevertheless, a constant friction angle and s
densification are observed—a property referred to
‘‘aging’’—which reproduce the experimental results qualit
tively @11#. By construction, the strain takes place throu
local shear bands which initially travel throughout the m
dium homogeneously~and hence produce a uniform shea!,
but which progressively become more permanent, giving
to more steady shear bands, a feature also observed ex
mentally@13#. Our model reproduces further features seen
experiments and numerical simulations, including the hig
frequency fluctuations of the local shear@6#.

In addition, we predict a complex self-organization
these shear bands, displayed in the inhomogeneities in
local density. This feature can be studied experimentally
particular through the use of x-ray tomography, to access
local density of a sheared medium. The use of tracer parti
could also be helpful in identifying the inhomogeneous ag
and localization of the shear bands as well as their sud
changes.

Most of the results presented here for the Euclidean lat
are closely mirrored by the results on the hierarchical latt
studied in@18#. The recursive topology of this lattice allow
a quantitative analytical understanding of many of the qu
tities studied numerically in this paper. This includes elu
dating the mechanism for the breakdown of ergodicity a
the slow density evolution, as well as the behavior of t
Hamming distance at late times.
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@16# V. K. Horváth, I. M. Jánosi, and P. J. Vella, Phys. Rev. E54,

2005 ~1996!.
@17# A. N. Berker and S. Ostlund, J. Phys. C12, 4961~1979!.
02130
@18# J. Török, S. Krishnamurthy, J. Kerte´sz, and S. Roux, Phys
Rev. E~to be published!.

@19# M. Kardar, Phys. Rev. Lett.55, 2923~1985!; T. Halpin-Healy
and Y.-C. Zhang, Phys. Rep.254, 215 ~1995!.
3-11


